

An open protocol to allow secure
authorization in a simple and

standard method from web, mobile
and desktop applications.

— OAuth 2.0 Definition

Why is this relevant for IXP operators?

OAuth 2.0 Roles

• The resource owner is the user - you and I.

• The client is the third party application looking for access to the
user's account.

• The authorization server is that which presents the interface for
the user to approve / deny access to the client.

• The resource server is the API server used to access the user's
information (often the same as the authorization server).

OAuth 2.0 - IDs, Secrets and URLs

Example OAuth Authorization Process

Let's look at IXP Manager with PeeringDB.

• What happens if we click on Login with PeeringDB?

Example OAuth Authorization Process

User clicks on Login with PeeringDB [1]:

1. HTTP GET request to client [2]: /auth/login/peeringdb

2. Returns a HTTP redirect response to send the user to [3]:

 https://auth.peeringdb.com/oauth2/authorize/
 ?response_type=code
 &client_id=CLIENT_ID
 &redirect_uri=REDIRECT_URI
 &scope=profile+email+networks
 &state=1234zyx

UVeU

(1) ClickV "LRg iQ ZiWh..."

(2) HTTP GET ReTXeVW fRU OAXWh PURceVV

(3) OAXWh UeTXeVW fRU AUTH_CODE

(4) AXWhRUi]aWiRQ VeUYeU UeTXiUeV XVeU aXWhRUi]aWiRQ

ClieQW

AXWhRUi]aWiRQ (aQd UeVRXUce)
VeUYeU

Example OAuth Authorization Process

Asked to authorize INEX's IXP Manager [4].
(And note the requested scopes)

Example OAuth Authorization Process

If the user clicks authorize [5], the authorization service redirects
back via the (verified) redirect URL [6] with an authorization code:

https://www.someix-ixpmanager/auth/login/peeringdb/callback
 ?code=AUTH_CODE
 &state=1234zyx

1. Use of SSL mandatory.

2. Redirect URL must match what was registered for the client.

3. Client must compare received state to what was sent.

UVeU

(1) COLcNV "LRg LQ ZLWh..."

(2) HTTP GET ReTXeVW fRU OAXWh PURceVV

(3) OAXWh UeTXeVW fRU AUTH_CODE

(4) AXWhRUL]aWLRQ VeUYeU UeTXLUeV XVeU aXWhRUL]aWLRQ

(5) UVeUV aXWhRUL]eV acceVV

(6) HTTP RedLUecW bacN WR cOLeQW aSSOLcaWLRQ

COLeQW

AXWhRUL]aWLRQ (aQd UeVRXUce)
VeUYeU

Example OAuth Authorization Process

In the background, the client now uses the code=AUTH_CODE
received to get an access token via a POST request to the
authorization server [7].

 https://auth.peeringdb.com/oauth2/token/
 ?grant_type=authorization_code
 &code=AUTH_CODE
 &redirect_uri=REDIRECT_URI
 &client_id=CLIENT_ID
 &client_secret=CLIENT_SECRET

UVHU

(1) COLcNV "LRJ LQ ZLWK..."

(2) HTTP GET RHTXHVW IRU OAXWK PURcHVV

(3) OAXWK UHTXHVW IRU AUTH_CODE

(4) AXWKRUL]aWLRQ VHUYHU UHTXLUHV XVHU aXWKRUL]aWLRQ

(5) UVHUV aXWKRUL]HV accHVV

(6) HTTP RHGLUHcW bacN WR cOLHQW aSSOLcaWLRQ

(7
) R

HT
XH

VW
 /

JH
W A

CC
ES

S_
TO

KE
N

COLHQW

AXWKRUL]aWLRQ (aQG UHVRXUcH)
VHUYHU

Example OAuth Authorization Process

Once the client has an access token, it can request user
information with the scope(s) that it has been authorized for via
HTTP GET [8].

 https://auth.peeringdb.com/profile/v1

 HTTP Headers:
 Authorization: Bearer ACCESS_TOKEN

UVHU

(1) COLFNV "LRJ LQ ZLWK..."

(2) HTTP GET RHTXHVW IRU OAXWK PURFHVV

(3) OAXWK UHTXHVW IRU AUTH_CODE

(4) AXWKRUL]aWLRQ VHUYHU UHTXLUHV XVHU aXWKRUL]aWLRQ

(5) UVHUV aXWKRUL]HV aFFHVV

(6) HTTP RHGLUHFW baFN WR FOLHQW aSSOLFaWLRQ

(7
) R

HT
XH

VW
 /

JH
W A

CC
ES

S_
TO

KE
N

(8
) R

HT
XH

VW
 /

JH
W X

VH
U S

UR
ÀOH

COLHQW

AXWKRUL]aWLRQ (aQG UHVRXUFH)
VHUYHU

UVHU

(1) COLFNV "LRJ LQ ZLWK..."

(2) HTTP GET RHTXHVW IRU OAXWK PURFHVV

(3) OAXWK UHTXHVW IRU AUTH_CODE

(4) AXWKRUL]aWLRQ VHUYHU UHTXLUHV XVHU aXWKRUL]aWLRQ

(5) UVHUV aXWKRUL]HV aFFHVV

(6) HTTP RHGLUHFW EaFN WR FOLHQW aSSOLFaWLRQ

(7
) R

HT
XH

VW
 /

JH
W A

CC
ES

S_
TO

KE
N

(8
) R

HT
XH

VW
 /

JH
W X

VH
U S

UR
ÀOH

(9) UVHU UHJLVWHUHG / ORJJHG LQ
COLHQW

AXWKRUL]aWLRQ (aQG UHVRXUFH)
VHUYHU

Example OAuth Authorization Process
Remember, from a user perspective, this is usually two clicks.

1. Click Login with PeeringDB [1]

• browser gets redirected to PeeringDB asking for user permission [2,3,4].

2. Grant permission [5]

• browser gets redirected back to client from authorization server [6]

• client receives AUTH_CODE which is exchanges for an ACCESS_TOKEN [6,7]

• client uses ACCESS_TOKEN to get user information [8]

• client creates and/or logs user in

3. User logged into client application. [9]

Sample User Profile from PeeringDB
 {
 "id": 9999,
 "name": "Barry O'Donovan",
 "given_name": "Barry",
 "family_name": "O'Donovan",
 "email": "barry.odonovan@inex.ie",
 "verified_user": true,
 "verified_email": true,
 "networks": [
 {
 "perms": 15, "asn": 65500, "name": "Acme Net", "id": 9999
 }, {
 "perms": 15, "asn": 65501, "name": "Example Net", "id": 9998
 }
]
 }

IXP Manager Verification (1/2)

How does IXP Manager validate & use user detail from PeeringDB?

• data structure okay (user details present, network(s) present)?

• user has verified_user and verified_email with PeeringDB?

• at least one of the networks are IX members?

• load (by PeeringDB ID) or create user object in IXP Manager

• created user is a read-only user by default

IXP Manager Verification (2/2)
• remove any user/network associations in IXP Manager that previously came

from PeeringDB but are no longer present in the new PeeringDB network list

• add any new user/network associations (only if a normal peering network
that is current, connected and hasn't requested PeeringDB OAuth be
disabled for them)

Then either:

• if no user/network associations at end of process, delete user;

• otherwise log user in.

Do We Trust PeeringDB?

So Do We Trust PeeringDB?
 This is a reasonably small industry where the

significant human actors are well known.

So yes, we trust PeeringDB
!

What Are the Risks?

1. OAuth protocol is well understood, widely used and sound.

2. IXP Manager and PeeringDB use well established libraries for
OAuth server / client.

3. Implementation issues?

What's the Exposure

To my mind, not a lot:

• Port details, IP addressing, NOC details (available via IX-F
Export, PeeringDB, IX website)

• Traffic graphs, peer to peer graphs

• Again, read-only access by default

• Again, absolutely no superadmin access via OAuth

INEX's Experience with PeeringDB OAuth

• Launched August 29th, 2019

• 26 new users created since

• 17 via PeeringDB, 2 by member admins, 5 by ops team

• i.e. 65% of new users required no other actor

• Feedback has been 100% positive

• no member has requested an opt-out

IXP Manager Support
• Released in IXP Manager v5.2.0 on September 20th

• Enabling PeeringDB OAuth is really easy1:

1. Register your IXP Manager instance as an OAuth application on PeeringDB.

2. Add configuration elements to .env:

AUTH_PEERINGDB_ENABLED=true
PEERINGDB_OAUTH_CLIENT_ID="xxx"
PEERINGDB_OAUTH_CLIENT_SECRET="xxx"
PEERINGDB_OAUTH_REDIRECT="https://www.my-ixpmanager-url.com/auth/login/peeringdb/callback"

1 https://docs.ixpmanager.org/features/peeringdb-oauth/

%23oauth-pdb-secrets
https://docs.ixpmanager.org/features/peeringdb-oauth/

References

• IXP Manager documentation for enabling PeeringDB Oauth

• PeeringDB OAuth 2.0 Documentation

• OAuth 2.0 Community Site, rfc6749, rfc6750, rfc6819

• OAuth 2 Simplified - excellent blog post.

• Laravel Socialite and Laravel Passport (via oauth2-server)

• Python Django Oauth Toolkit (via OAuthLib)

https://docs.ixpmanager.org/features/peeringdb-oauth/
https://docs.peeringdb.com/oauth/
https://oauth.net/
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc6819
https://aaronparecki.com/oauth-2-simplified/
https://laravel.com/docs/6.x/socialite
https://laravel.com/docs/6.x/passport
https://github.com/thephpleague/oauth2-server
https://django-oauth-toolkit.readthedocs.io/en/latest/
https://github.com/oauthlib/oauthlib

